Information of news
  • Author: mitsumi
  • Date: 25-06-2021, 12:36
25-06-2021, 12:36

Time Series Analysis, Forecasting, and Machine Learning

Category: Tutorials

Time Series Analysis, Forecasting, and Machine  Learning
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 120 lectures (16h 29m) | Size: 3.5 GB

Python for LSTMs, ARIMA, Deep Learning, AI, Support Vector Regression, +More Applied to Time Series Forecasting

What you'll learn:
ETS and Exponential Smoothing Models
Holt's Linear Trend Model and Holt-Winters
Autoregressive and Moving Average Models (ARIMA)
The statsmodels Python library
The pmdarima Python library
Machine learning for time series forecasting
Deep learning (ANNs, CNNs, RNNs, and LSTMs) for time series forecasting
Tensorflow 2 for predicting stock prices and returns
Vector autoregression (VAR) and vector moving average (VMA) models (VARMA)
AWS Forecast (Amazon's time series forecasting service)
FB Prophet (Facebook's time series library)
Modeling and forecasting financial time series
GARCH (volatility modeling)

Decent Python coding skills
Numpy, MatDescriptionlib, Pandas, and Scipy (I teach this for free! My gift to the community)
Matrix arithmetic

Hello friends!

Welcome to Time Series Analysis, Forecasting, and Machine Learning in Python.

Time Series Analysis has become an especially important field in recent years.

With inflation on the rise, many are turning to the stock market and cryptocurrencies in order to ensure their savings do not lose their value.

COVID-19 has shown us how forecasting is an essential tool for driving public health decisions.

Businesses are becoming increasingly efficient, forecasting inventory and operational needs ahead of time.

Let me cut to the chase. This is not your average Time Series Analysis course. This course covers modern developments such as deep learning, time series classification (which can drive user insights from smartphone data, or read your thoughts from electrical activity in the brain), and more.

We will cover techniques such as:

ETS and Exponential Smoothing

Holt's Linear Trend Model

Holt-Winters Model



Vector Autoregression and Moving Average Models (VAR, VMA, VARMA)

Machine Learning Models (including Logistic Regression, Support Vector Machines, and Random Forests)

Deep Learning Models (Artificial Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks)

GRUs and LSTMs for Time Series Forecasting

We will cover applications such as:

Time series forecasting of sales data

Time series forecasting of stock prices and stock returns

Time series classification of smartphone data to predict user behavior

The VIP version of the course will cover even more exciting topics, such as:

AWS Forecast (Amazon's state-of-the-art low-code forecasting API)

GARCH (financial volatility modeling)

FB Prophet (Facebook's time series library)

So what are you waiting for? Signup now to get lifetime access, a certificate of completion you can show off on your LinkedIn profile, and the skills to use the latest time series analysis techniques that you cannot learn anywhere else.

Who this course is for
Anyone who loves or wants to learn about time series analysis
Students and professionals who want to advance their career in finance, time series analysis, or data science

Time Series Analysis, Forecasting, and Machine  Learning

Buy Premium Account From My Download Links And Get Resumable Support & SUPER Fastest speed




Links are Interchangeable - No Password - Single Extraction
Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.
We recommend you Sign up or Login to website under your name.
Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.

Tag Cloud

archive of news