﻿ Arithmetic Groups and Their Generalizations What, Why, and How » GFXhome for Graphic Designers

» » Arithmetic Groups and Their Generalizations What, Why, and How

Information of news
13-04-2015, 02:28

### Arithmetic Groups and Their Generalizations What, Why, and How

Category: E-Books

Lizhen Ji, "Arithmetic Groups and Their Generalizations: What, Why, and How"
English | ISBN: 0821848666 | 2008 | 259 pages | PDF | 3 MB

In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n,\mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA. Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematica

Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.