» » Introduction to Quantum Groups and Crystal Bases

Information of news
  • Author: Alexandr
  • Date: 19-01-2014, 00:21
19-01-2014, 00:21

Introduction to Quantum Groups and Crystal Bases

Category: E-Books

Introduction to Quantum Groups and Crystal Bases

Introduction to Quantum Groups and Crystal Bases
English | 307 pages | ISBN-10: 0821828746 | DJVU | 2.99 MB

The notion of a "quantum group" was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras.

And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras.

In particular, the theory of "crystal bases" or "canonical bases" developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
(Buy premium account for maximum speed and resumming ability)


Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.
We recommend you Sign up or Login to website under your name.
Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.