» » Advances in Fuzzy Implication Functions

Information of news
21-10-2013, 06:57

Advances in Fuzzy Implication Functions

Category: E-Books

Advances in Fuzzy Implication Functions

Michal Baczynski, Gleb Beliakov, "Advances in Fuzzy Implication Functions"
2013 | ISBN-10: 3642356761 | 250 pages | PDF | 5,4 MB

Fuzzy implication functions are one of the main operations in fuzzy logic. They generalize the classical implication, which takes values in the set {0,1}, to fuzzy logic, where the truth values belong to the unit interval [0,1]. These functions are not only fundamental for fuzzy logic systems, fuzzy control, approximate reasoning and expert systems, but they also play a significant role in mathematical fuzzy logic, in fuzzy mathematical morphology and image processing, in defining fuzzy subsethood measures and in solving fuzzy relational equations.
This volume collects 8 research papers on fuzzy implication functions.

Three articles focus on the construction methods, on different ways of generating new classes and on the common properties of implications and their dependencies. Two articles discuss implications defined on lattices, in particular implication functions in interval-valued fuzzy set theories. One paper summarizes the sufficient and necessary conditions of solutions for one distributivity equation of implication. The following paper analyzes compositions based on a binary operation * and discusses the dependencies between the algebraic properties of this operation and the induced sup-* composition. The last article discusses some open problems related to fuzzy implications, which have either been completely solved or those for which partial answers are known. These papers aim to present today's state-of-the-art in this area.


Site BBcode/HTML Code:

Tags to an Article: Advances, Fuzzy, Implication, Functions

Dear visitor, you went to the site as unregistered user.
We recommend you Sign up or Login to website under your name.
Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.